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Introduction to the LROC NAC

The Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) are a pair of high-resolution pushbroom cameras 
on the Lunar Reconnaissance Orbiter (LRO). The two cameras (NAC-Left and NAC-Right) sweep out parallel and slightly overlapping 
ground tracks, and acquire images simultaneously. Typical LROC NAC images range in pixel scale from 0.5 - 2.0 m/px, and a typical 
NAC pair is ~10,000 pixels wide (~east-west) by ~52,000 pixels long (~north-south), for normal footprint sizes of ~5x26 km to ~20x100 
km.

From September 2009 through December 2011, the LRO spacecraft was in a 50 km altitude circular polar orbit, so most LROC NAC 
images from that time have a pixel scale of ~0.5 m/px. On 11 December 2011, LRO was moved to a more stable elliptical polar orbit 
to save fuel (similar to the Commissioning Phase orbit LRO was in prior to 15 September 2009), and images from this elliptical orbit 
have varying resolutions. The periapsis of this orbit is near the south pole, so images of the northern hemisphere have larger pixel 
scales (~2.0-1.0 m/px, depending on latitude and year), while images of the southern hemisphere have smaller pixel scales (~1.0-0.4 
m/px). The orbit is evolving towards circularity, so this resolution dichotomy gets less pronounced from 2011 to ~2022.

To improve signal-to-noise ratio under low-Sun conditions, the NAC can acquire images in “summed” mode, where adjacent pixels 
have their values combined during readout from the sensor. This reduces the image width from 5064 px to 2532 px, and doubles 
the pixel scale. Summed images are the norm for polar observations.

Because LROC is a pushbroom camera, the length and width of a pixel on the ground may not be the same. Images are frequently 
targeted with an exposure time that makes the two dimensions roughly match, making the raw image appear “normal”, but you 
may run into images with significant down-track stretching or squishing (up-down in the raw image). There is generally no additional 
processing needed to handle this, though particularly long-exposure images of shadowed areas, with pixels several times longer 
than they are wide, can benefit from shrinking the image in the cross-track direction to a more square pixel aspect ratio before 
map-projection.

Image IDs: NAC image IDs look like “M1234567890L”, where “M” is the target (M=Moon, E=Earth, C=star Calibration), “1234567890” 
is a nine- or ten-digit number related to the mission elapsed time when the image was acquired (an extra digit was added in June 
2012 to accommodate the extended duration of the mission. Keep in mind that the first digit is always “1” (the spacecraft clock 
partition ID) regardless of how many digits the ID has, but otherwise the number increases over time), and “L” (or “R”) indicates 
whether the image is from the NAC-Left or NAC-Right. PDS products append an “E” or “C” to the end of the image ID, depending on 
whether the product is an Experimental Data Record (EDR) or Calibrated Data Record (CDR).

The Principle Investigator for LROC is Mark Robinson at Arizona State University. For more information on the LROC NACs, see the 
instrument paper.

Locating LROC NAC Data

There are a number of ways to find LROC NAC data. The official PDS archive search is at http://wms.lroc.asu.edu/lroc/search, which 
allows searching by a number of parameters.  However, a more convenient way to locate LROC data of a specific feature may be 
to use QuickMap. You can use the Draw Point or Draw Polygon tool to select an area and search for LROC NACs that include that 
area, and filter the results by lighting and viewing geometry.  You can also load the results onto the map view to preview the images.  
The results list has links to the PDS archive where you can download the data. See the QuickMap User Guide for more details.

Regardless of how you get to the PDS archive page, you will need to download the EDR file.  Do not download CDR files if you intend 
to do any further processing with them, such as map-projection, as they will be more complicated to use than EDRs, are twice the 
size, and may not use the most recent calibration parameters.

Note: Almost all LROC NAC observations come in pairs (one image each from the left and right cameras) that you must download 
from separate pages. The PDS archive page will have a link to the matching observation of a pair if it exists.

Working with Lunar Reconnaissance Orbiter LROC Narrow 
Angle Camera (NAC) Data
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Websites where you can find LROC data:

•	 LROC PDS Archive Search
•	 LROC PDS Archive
•	 Image Atlas, PDS Imaging Node Image Atlas
•	 ACT-REACT QuickMap for LROC data
•	 PDS Geosciences Node Lunar Orbital Data Explorer

Processing LROC NAC Data

The standard LROC NAC processing pipeline uses the United States Geologic Survey’s Integrated System for Imagers and 
Spectrometers (ISIS) software, preferably version 7.1 or later. If you do not have ISIS installed on your computer, see this page for 
installation instructions. ISIS is only supported on MacOS and Linux computers or virtual machines, but there have been reports of 
successful installation on the Linux Subsystem for Windows.

Basic processing (quick-start version)

1.	 Download EDR files from your favorite source (see above).
2.	 lronac2isis from=M1234567890LE.IMG to=M1234567890L.raw.cub
3.	 spiceinit from=M1234567890L.raw.cub spksmithed=true web=true
4.	 lronaccal from=M1234567890L.raw.cub to=M1234567890L.cal.cub
5.	 lronacecho from=M1234567890L.cal.cub to=M1234567890L.echo.cub
6.	 Optionally use photomet to do a photometric correction (see below for details).

At this point you have a fully-calibrated Level 1 cube, equivalent to a CDR from the PDS, but with embedded position information. 
Repeat steps 1-6 for all images you want to combine in a single mosaic, then put the paths to those images in a text file “mosaic_
level_1.lis”.

7.	 mosrange fromlist=mosaic_level_1.lis to=mosaic.map projection=equirectangular (or create a map file using 
maptemplate)

8.	 Optionally use reduce to downsample the images (see below for details).
9.	 cam2map from=M1234567890L.echo.cub to=M1234567890L.map.cub map=mosaic.map pixres=map \ 

 warpalgorithm=forwardpatch patchsize=100

Repeat steps 8 and 9 for each image, then put the paths to those images in a text file “mosaic_level_2.lis”. You now have a set of 
map-projected images with matching scales and projections, which can be used alone or mosaicked together:

10.	 automos from=mosaic_level_2.lis mos=mosaic.cub
 
You can find more detailed explanations of each step below, along with various additional options and tweaks that may improve 
your results.

1) Convert EDR to ISIS cube

There is a specific program for converting LROC NAC EDR images to ISIS cubes, lronac2isis, which preserves all the keywords 
needed to properly calibrate the image:

lronac2isis from=M1234567890LE.IMG to=M1234567890L.raw.cub

2) Attach camera position information

ISIS uses the Navigation and Ancillary Information Facility SPICE system to determine the camera position during the observation, 
so that the image can be correctly projected onto the surface. This is initialized using the spiceinit program. Technically this step 
is not required before step 5 (photometric correction), but it can be convenient to do it at the start so that you can query the image 
for geometric information immediately, or determine if you have the required kernels available before doing extra processing. Basic 
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operation is simple:

spiceinit from=M1234567890L.raw.cub spksmithed=true

Note: If you did not choose to download SPICE kernels as part of your ISIS installation, also add web=true to get SPICE information 
from the USGS servers.

The spksmithed=true part of the basic spiceinit call causes ISIS to use the LOLA/GRAIL “smithed” SPKs when available, which 
improve the position accuracy of LRO by a factor of 5-10 over the default SPKs (add spkrecon=false to the command to cause 
an error if smithed SPKs are not available; smithed SPKs are usually produced with a several-month lag, and might not be available 
for recent images).

There are also a couple more things you can do to further improve the final product:

Use a better shape model
The ISIS default lunar shape model is a 237 m/px (128 px/degree) global LOLA digital elevation model (DEM or DTM), which contains 
significant interpolated regions near the equator. For an easy-to-use higher-quality DEM, you can download a 100 m/px version of 
the GLD100+LOLA global DEM from the LROC Popular Downloads page (“WAC GLD 100 Topography”). You can specify this model 
in spiceinit by adding shape=user model=/path/to/GLD100_file.cub to the command. 

Note: On ISIS versions prior to 4.4.0, you cannot specify a custom shapemodel when using web SPICE.

For images close to a pole (particularly those with large slew angles), it might be better to use LOLA polar DEMs directly (“LDEM” 
files archived on the LOLA PDS website). Unlike the GLD100 cube file above, these will need to be converted using pds2isis, 
rescaled to have radius values in meters using fx, and then will need demprep run on them:

pds2isis from=LDEM_80S_20M_FLOAT.LBL to=LDEM_80S_20M_FLOAT.cub 
 
fx f1=LDEM_80S_20M_FLOAT.cub equation="f1*1000" to=LDEM_80S_20M_FLOAT.meters.cub 
 
demprep from=LDEM_80S_20M_FLOAT.meters.cub to=LDEM_80S_20M_FLOAT.demprep.cub

Similarly, the SLDEM (download links) is a much higher-quality terrain model (60 m/px resolution) for areas within 60° of the equator. 
The following code can create a global SLDEM mosaic from the full-resolution tiles (“SLDEM2015_512”), though be warned that the 
resulting file is 43 GB:

pds2isis from=sldem2015_512_00n_30n_000_045_float.lbl to=SLDEM2015_512_00N_30N_000_045.cub 
 
# Repeat the above command for each tile, and list all the cube paths in sldem.lis 
 
automos fromlist=sldem.lis mosaic=SLDEM_km.cub matchbandbin=false 
 
fx f1=SLDEM_km.cub to=SLDEM_m_rad.cub equation="f1*1000" 
 
demprep from=SLDEM_m_rad.cub to=SLDEM.demprep.cub

In small areas, you can use NAC DEMs to get very accurate projection (this is mostly only relevant for images with > ~5° slew angles). 
Using NAC DEMs as shapemodels requires adding the 1,737,400 m lunar radius to the DEM values, and running demprep. Also, 
keep in mind that for NAC DEMs, it’s critical to correct the image’s pointing to align with the DEM, for example by using deltack:

# Set up DEM 
 
pds2isis from=NAC_DTM_APOLLO11_E008N0234.IMG to=NAC_DTM_APOLLO11_E008N0234.cub 
 
fx f1=NAC_DTM_APOLLO11_E008N0234.cub equation="f1+1737400" \ 
to=NAC_DTM_APOLLO11_E008N0234.radius.cub 
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demprep from= NAC_DTM_APOLLO11_E008N0234.radius.cub to= NAC_DTM_APOLLO11_E008N0234.demprep.cub 
 
# Process image.  This image is being aligned to the Apollo 11 retroreflector's coordinates  
# and elevation as measured from the DTM and corresponding high-resolution orthophoto, which  
# may differ slightly from its true position 
 
spiceinit from=M175124932R.raw.cub shape=user model=NAC_DTM_APOLLO11_E008N0234.demprep.cub \ 
spksmithed=true 
 
deltack from=M175124932R.raw.cub samp1=2505 line1=23805 lat1=0.673433 lon1=23.473113 \ 
rad1=1735471.9565

When using a NAC DEM as the radius source in spiceinit, keep in mind that locations outside the DEM’s area will not have defined 
geometry, so applications like campt will not work outside the DEM bounds, and when map-projecting the image, only those parts 
that overlap the DEM will be processed.

Note that simply adding the lunar radius to the DEM values causes some quantization of the DEM due to limitations of the 32-bit 
floating-point format. The precision of a given pixel’s elevation value will be reduced to ~10-20 cm. This is unlikely to significantly 
impact projected image quality, but can be partially avoided by converting the DEM to 16-bit format and taking advantage of the 
Base and Multiplier parameters. The exact parameters to do this, and resulting level of quantization, will vary depending on the 
minimum and maximum elevations in the DEM. Some general code for doing this in Bash follows:

# Import and convert to 16-bit 
 
pdsfile=NAC_DTM_APOLLO11_E008N0234.IMG 
 
pdsname=$(basename "$pdsfile" .IMG) 
 
pds2isis from="$pdsfile" to="$pdsname.cub" 
 
read min max <<<"$(stats from="$pdsname.cub" | awk '/ Minimum /{min=$3} / Maximum /{max=$3} 
END{print min,max}')" 
 
cubeatt from="$pdsname.cub" to="$pdsname.16bit.cub"+unsignedword+$min:$max 
 
# Add lunar radius by editing the label 
 
base=$(getkey from="$pdsname.16bit.cub" grpname=Pixels keyword=Base) 
 
base=$(bc <<<"$base + 1737400") 
 
editlab from="$pdsname.16bit.cub" grpname=Pixels keyword=Base value=$base 
 
# Finally, run demprep 
 
demprep from="$pdsname.16bit.cub" to="$pdsname.demprep.cub"

Light time correction

Technically, ISIS does not quite handle light-time delay to the surface quite correctly, to keep processing times reasonable. For 
LROC, it assumes there is no delay between light leaving the surface and hitting the detector, which causes a ~0.5-1m downtrack 
error for LROC images of the Moon. If you care about this (and are not using web SPICE), you can make a copy of $ISISDATA/lro/
kernels/iak/lro_instrumentAddendum_v04.ti, changing the 0.0 in the following lines to the negative of the light time to the 
surface in seconds:

INS-85600_CONSTANT_TIME_OFFSET = ( 0.0 ) 
 
INS-85610_CONSTANT_TIME_OFFSET = ( 0.0 )
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You will then need to specify this new IAK in the spiceinit call using iak=/path/to/custom_iak.ti. You can calculate the light 
time to surface by running spiceinit on the file once, using campt to get the slant distance for the center of the image (distance 
to surface in km), and dividing that by the speed of light (299792.458 km/s).

To properly process one of the handful of LROC NAC images of Earth, you will instead want to turn light-time correction on, by 
changing the keywords in the following two lines in the copied IAK file from 'NONE' to 'LT+S':

INS-85600_LIGHTTIME_CORRECTION = 'NONE' 
 
INS-85610_LIGHTTIME_CORRECTION = 'NONE'

You will also need to change the NAC image header to indicate that Earth is the target before running spiceinit:

editlab from=E1234567890L.raw.cub grpn=Instrument keyw=TargetName Value=Earth

4) Radiometric calibration

This step converts the pixel values from DN in the EDR into I/F (irradiance) units using lronaccal.

lronaccal from=M1234567890L.raw.cub to=M1234567890L.cal.cub

If radiance values are needed instead, the following change will calibrate to radiance (in units of W/m2/sr/µm):

lronaccal from=M1234567890L.raw.cub to=M1234567890L.cal.cub RadiometricType=radiance

If you are using a version of ISIS older than 7.1.0, you may notice vertical-line artifacts in recent NAC images. This is due to those 
versions not using time-dependent dark corrections, which correct for the degradation of the sensors over time.

5) Echo-correction

Due to the way the LROC NAC detectors were modified to read out pixels fast enough to image the Moon’s surface at 0.5 m pixel 
scale, there is an artifact in moderate and high signal pixels where ~30% of each pixel’s brightness is echoed two pixels later along 
the detector. The lronacecho program fixes that artifact, although for some images, particularly those with a high Sun elevation, 
this may result in a significantly noisier-looking image:

lronacecho from=M1234567890L.cal.cub to=M1234567890L.echo.cub 

This process introduces its own minor artifact on one edge of the image, which, along with a very minor edge-of-image darkening 
that lronaccal does not remove, can be trimmed off with the trim command. The ideal amounts to trim differ depending on 
whether you are processing a NAC-Left or -Right image:

NAC-L:

trim from=M1234567890L.echo.cub to=M1234567890L.tr.cub left=46 right=26 

NAC-R: 
 

trim from=M1234567890R.echo.cub to=M1234567890R.tr.cub left=26 right=46

If the image is summed (in the EDR label, look for “CROSSTRACK_SUMMING = 2”, or check if the image width is 2532 pixels), divide 
those numbers by two: the trim amounts should be 23 and 13.



Lunar Reconnaissance Orbiter Camera

6) (Optional) Photometric correction

When mosaicking images taken under non-matching lighting conditions, it can be important to correct the images’ brightnesses to 
a common set of photometric angles. This is particularly useful for Featured Mosaic image sequences, where LRO slews on several 
successive orbits to build up a continuous swath of NAC images with nearly-identical incidence, but varying emission angles.

The lronacpho application (new in ISIS 7.1) is the recommended method of photometrically normalizing LROC NAC images to remove 
the effects of incidence and emission angle changes:

lronacpho from=M1234567890L.tr.cub to=M1234567890L.pho.cub phopar=nacpho.pvl

Where nacpho.pvl contains the following:

Object = NormalizationModel 
  Group = Algorithm 
    Name = LROC_Empirical 
    PhotoModel = LROC_Empirical 
    Incref=30.0 
    Emaref=0.0 
    Pharef=30.0 
  EndGroup 
EndObject 
 
Object = PhotometricModel 
  Units = Degrees 
  Group = Algorithm 
    Name = LROC_Empirical 
    FilterName = “Broadband” 
    BandBinCenter = 600.0 
    A0 = -2.9811422 
    A1 = -0.0112862 
    A2 = -0.8084603 
    A3 =  1.3248888 
  EndGroup 
EndObject

For most published LROC NAC controlled mosaics (which have large emission angle changes) and uncontrolled polar mosaics (which 
have large incidence angle changes), which predate the development of the photometric model used in lronacpho, the LROC team 
used photomet:

photomet from=M1234567890L.tr.cub to=M1234567890L.pho.cub frompvl=basicpho.pvl

Where basicpho.pvl contains the following:

Object = NormalizationModel 
  Group = Algorithm 
    Name = Mixed 
    Incmat = 87.0 
    Albedo = 0.05 
    Incref = 0.0 
    Thresh = 10E30 
  EndGroup 
EndObject 
 
Object = PhotometricModel 
  Group = Algorithm 
    Name = HapkeHen 
    Wh = 0.278906221 
    Hh = 0.0438 
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    B0 = 1.0 
    Theta = 10.0 
    HG1 = 0.229315607 
    HG2 = 0.0 
  EndGroup 
EndObject

Map-projection and mosaicking

7) Create a map file

The LROC team typically uses the equirectangular projection type, with center latitude and longitude near the center of the mosaic 
region (our PDS products typically use the center of the region rounded to 0.1 degree). For small polar products above 70 degrees 
latitude, we use a polar stereographic projection with the same center latitude/longitude conventions. For products covering an 
entire pole, or that are intended to be used in conjunction with such products, we use polar stereographic with a center latitude of 
90 or -90 (depending on the pole), and a center longitude of 0.

There are two good ways to create a map file for a project. If you know the exact bounds or centerpoint of the area you’re interested 
in, use maptemplate. If you just want the best settings to mosaic a set of NACs together (especially for just processing a single pair), 
use mosrange.

Note: If you want to match an existing map-projected cube, you can specify that cube as the map file, rather than creating a separate 
map file.

maptemplate

maptemplate is the standard program for making a map definition file for ISIS. If you are making multiple products of a specific 
area, this is the program to use. Unless you are writing a script, it’s usually easiest to just run maptemplate with no options, and 
use the graphical interface to select the options you want.

mosrange
If you are just map-projecting one NAC pair or a small mosaic, and don’t care about aligning/mosaicking with other products, it can 
be more convenient to use mosrange, which automatically generates a map projection definition with a suitable center, resolution, 
and bounds for a set of images. First, list all of the calibrated cubes in a list file (called images.lis in the below example), then run 
mosrange:

mosrange fromlist=images.lis projection=equirectangular to=mosaic.map

Considerations for use with GIS software

All published LRO products use longitude values 0-360. However, ESRI programs (such as ArcMap) work better with longitude values 
in the range -180 to +180. If you intend to use your map-projected products in Arc, you should add londom=180 to the command 
you use to generate a map file (both maptemplate and mosrange accept this argument; in the maptemplate graphical interface, 
the option is called “LONDOM: -180 to 180 degree longitude values” under “Target Parameters”).

8) (Optional) Reduction

If you will be downsampling your images significantly while map-projecting them (that is, the map-projected pixels will be more 
than 2x larger in X or Y than the raw images’ pixels), it is beneficial to use reduce to downsample the unprojected image to a scale 
closer to the final product before map projection. This will both decrease processing time and increase image quality, as without 
the reduction step the map-projection algorithm will not properly average all the pixels that should go into each output pixel, and 
the final image will appear much noisier than it should.
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The optimal reduction factor is the largest integer factor that will leave the unprojected image higher-resolution than the output 
map. Because NACs have non-square pixels, the scaling factor may be different in X and Y. For each dimension, the scaling factor 
should be ceiling( output_resolution / (input_resolution*2) ):

s_factor=$(bc <<<"$outputRes / ( $crosstrack * 2 ) + 1") 
 
l_factor=$(bc <<<"$outputRes / ( $downtrack * 2 ) + 1") 
 
reduce from=M1234567890L.tr.cub to=M1234567890L.tr.reduced.cub sscale=$s_factor lscale=$l_factor

Unfortunately, the ISIS campt program does not report accurate values for the line-direction pixels scales for raw NAC images. A 
better source for the line-direction pixel resolutions is the INDEX.TAB or CUMINDEX.TAB files with metadata for all LROC images, 
included in the INDEX subfolder of each LROC PDS Archive release. However, it can be inconvenient to deal with a 2+ GB text file, 
and these values are calculated with a spherical shape model and also do not correctly account for off-nadir viewing angles. To get 
the best measure of the input pixel size, use multiple campt calls to measure the surface position at multiple points, and calculate 
the pixel scales from that (this does not account for changes in scale from topography within the image, but will still be a marked 
improvement from the other methods). The following bash function will print out the sample-direction, line-direction, and average 
pixel scale at the center of the image using that method (~5 seconds/image):

function get_image_resolution() { 
    local _im="$1" 
    local _line=$(bc <<<"$(getkey from="$_im" grpn=Dimensions keyw=Lines) / 2") 
    local _sample=$(bc <<<"$(getkey from="$_im" grpn=Dimensions keyw=Samples) / 2") 
    local _camptfile=$(mktemp) 
     
    campt from="$_im" line="$_line" sample="$_sample" to="$_camptfile" append=false &>/dev/null 
    local _xyz1=$(getkey from="$_camptfile" grpn=GroundPoint keyw=BodyFixedCoordinate | sed 
's/,/ /g') 
    campt from="$_im" line="$((_line + 1))" sample="$_sample" to="$_camptfile" append=false >/
dev/null 
    local _xyz_dt=$(getkey from="$_camptfile" grpn=GroundPoint keyw=BodyFixedCoordinate | sed 
's/,/ /g') 
    campt from="$_im" line="$_line" sample="$((_sample + 1))" to="$_camptfile" append=false >/
dev/null 
    local _xyz_ct=$(getkey from="$_camptfile" grpn=GroundPoint keyw=BodyFixedCoordinate | sed 
's/,/ /g') 
    rm -f "$_camptfile" 
     
    local _downtrack=$(echo "$_xyz1 $_xyz_dt" | awk '{print sqrt( ($1-$4)^2 + ($2-$5)^2 + ($3-
$6)^2 ) * 1000}') 
    local _crosstrack=$(echo "$_xyz1 $_xyz_ct" | awk '{print sqrt( ($1-$4)^2 + ($2-$5)^2 + 
($3-$6)^2 ) * 1000}') 
     
    local _average=$(bc -l <<<"($_crosstrack + $_downtrack)/2") 
     
    echo $_crosstrack $_downtrack $_average 
} 
read crosstrack downtrack average <<<"$(get_image_resolution M1234567890L.tr.cub)" 

9) Map-projection

Use cam2map:

cam2map from=M1234567890L.pho.cub to=M1234567890L.map.cub map=mosaic.map \
warpalgorithm=forwardpatch patchsize=50
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To make this process take a reasonable amount of time, you need to specify the patch size parameter, otherwise ISIS will do a slow 
radius calculation for every pixel. The patch size should be the larger of (DEM pixel scale / raw image pixel scale) or (output image 
pixel scale / raw image pixel scale). Usually, it will be the first one. Example: Assume that you are projecting an image with a native 
pixel scale of 0.5 m/px, using the 100 m/px GLD100 as the DEM, and creating a file with a resolution of 1 m/px. Patch size should 
be the larger of: 100 / 0.5 = 200 (DEM pixel scale / raw image pixel scale) or 1 / 0.5 = 2 (Output pixel scale / raw image pixel 
scale) Thus, you would add the following arguments to the cam2map command:

 warpalgorithm=forwardpatch patchsize=200

Keep in mind that this formula may not always produce good results for oblique images (emission/slew angle >45 degrees). If the 
resulting image has unexpected null patches (or you just want to be conservative), reduce the patchsize parameter by at least a 
factor of four. This will increase processing time, however.

If you don’t want to do the detailed calculation for each image, 50 is generally a safe value for images that are non-oblique enough 
to be useful after map-projection, if using a global terrain model, but will likely be slower than the ideal value.

10) Mosaicking

Once you have map-projected the individual left/right images of a pair, you may want to mosaic them together into a single image 
file. The easiest way to do this is using automos:

ls M1234567890?.map.cub > M1234567890.lis 
 
automos fromlist=M1234567890.lis mos=M1234567890.mosaic.cub

Usually, there will be little if any visible seam between the left and right NACs of a pair. However, in some cases the temperature-
based model of the varying offset between the two does not quite match reality, and there is a visible offset. In these cases, it’s 
appropriate to use coreg to align the two images, and then re-mosaic them. You can also check the alignment before mosaicking 
by loading the two images in qview, linking them, using the ‘Find’ tool to mark the same lat/lon coordinates in both images, and 
looking for offsets.

11) (optional): Coregistration

This takes a few steps. First, you need to get a subset of one of the images, with exactly the same map bounds and dimensions as 
the other, and then run coreg on those two images (the contents for a reasonable nac_pair_align.def definition file are at the 
end of this section):

map2map from=M1234567890R.map.cub to=M1234567890R.Lbounds.cub map=M1234567890L.map.cub \ 
matchmap=true 
 
coreg from=M1234567890R.Lbounds.cub match=M1234567890L.cub deffile=nac_pair_align.def

In the output of coreg, you will find SampleAverage and LineAverage values. You will need these to offset the image that you 
are moving using translate:

translate from=M1234567890R.map.cub to=M1234567890R.map.shifted.cub strans=$sampleaverage \ 
ltrans=$lineaverage

You should now be able to seamlessly mosaic M1234567890L.map.cub and M1234567890R.map.shifted.cub together. 

Note: Just running the above translate line will likely cut a few pixels off of the edge of the image being moved. If you care about 
this, you can use the pad program to add some space (equal to the line and sample averages) to all sides of the image before running 
translate. You can also use editlab to change to UpperLeftCornerX and UpperLeftCornerY keys in the Mapping group to shift the 
image by a given number of meters without editing any pixels.

There is another tool for determining offsets between images, findfeatures, which uses computer vision algorithms to find 
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matching points between two images even if the areas do not fully overlap or have arbitrary offsets. However, this application is 
best used on areas much smaller than a full NAC image to keep processing time and memory usage reasonable, and extracting 
suitable x/y offset values from its output is outside the scope of this document. For NAC left/right pairs, coreg is the better application 
to use to measure offsets. 

Contents of nac_pair_align.def:

Object = AutoRegistration 
  Group = Algorithm 
    Name             = MaximumCorrelation 
    Tolerance        = 0.7 
    SubpixelAccuracy = True 
  End_Group 
 
  Group = PatternChip 
    Samples = 20 
    Lines   = 20 
  End_Group 
 
  # If you determine that the vertical or horizontal offset is >50 pixels, adjust the SearchChip  
  # size to be at least `20+offset*2`, where 20 is the PatternChip size. 
 
  Group = SearchChip 
    Samples = 120 
    Lines   = 120 
  End_Group 
 
  Group = SurfaceModel 
    DistanceTolerance = 1.5 
    WindowSize        = 5 
  End_Group 
End_Object 
End

Converting to other formats

GeoTiff

GeoTIFF is a common format for working with map-projected data on Earth, and often has better support than the more obscure 
ISIS cube format. To convert an ISIS cube to GeoTIFF, you will need to install the GDAL tools, and use gdal_translate. Basic usage 
requires specifying GeoTIFF (“GTiff”) as the output type, a suitable bit depth (“Byte” for 8-bit data), and using the -scale flag. This 
will stretch the min/max I/F values in the input (which range 0.0-1.0) to the full range of the output format (0-255 for 8-bit images).

gdal_translate -ot Byte -of GTiff -a_nodata 0 -scale mosaic.cub mosaic.tif

In cases where the image has some extremely bright pixels (particularly images of human or robotic landers), the default stretch 
may result in a very dark image. In this case, you will need to manually specify the input and output data ranges. (Tip: You can use 
the ISIS percent program to get the DN value for a certain percentile of an image: percent from=mosaic.cub percent=0.1. 
0.1% to 99.9% usually gives a good-looking output image.)

gdal_translate -ot Byte -of GTiff -a_nodata 0 -scale 0.0 1.0 0 255 mosaic.cub mosaic.tif

If you specify a custom stretch, and want NULL pixels in the ISIS cube to be preserved as unique values (DN 0) in an 8- or 16-bit 
GeoTIFF, you will need to limit the range of pixel values in ISIS using fx before running gdal_translate. Otherwise, valid data 
values below the minimum specified input DN will be incorrectly output as NoData (DN 0) instead of DN 1.
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minDN=$(percent from=mosaic.cub percent=0.1 | awk '/Value/{print $3}') 
 
maxDN=$(percent from=mosaic.cub percent=99.9 | awk '/Value/{print $3}') 
 
fx f1=mosaic.cub to=mosaic.clip.cub equation="f1 * (f1 >= $minDN) * (f1 <= $maxDN) + $minDN * \
(f1 < $minDN) + $maxDN * (f1 > $maxDN)" 
 
gdal_translate -ot Byte -of GTiff -a_nodata 0 -scale $minDN $maxDN 1 255 mosaic.clip.cub \ 
mosaic.8bit.tif 
 
# Or, for a 16-bit output file: 
 
gdal_translate -ot UInt16 -of GTiff -a_nodata 0 -scale $minDN $maxDN 1 65535 mosaic.clip.cub \ 
mosaic.16bit.tif

Recent versions of GDAL can convert GTiffs (and many other formats) into ISIS cubes, using the -of isis3 flag. If ISIS includes an 
importer for a format, that will generally be better, but this covers a lot of additional formats, and allows the use of ISIS commands 
to edit GeoTIFFs.

PNG, etc

For common image formats used for making figures, the isis2std program works very well. The default stretch of 0.5-99.5% is 
usually too high-contrast for the high dynamic range of LROC NAC images, so it’s often good to use a wider range:

isis2std from=mosaic.cub to=mosaic.png minpercent=0.1 maxpercent=99.9


